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Abstract 

NMTC code was refined by Nakahara of 
JAERI to make workable up to 250 of mass 
number. The code was used to explain the 
experimental results of high energy fission 
C.S. and the shoulder of spallation neutron 
spectra measured by KfK and LANL. Tsukada 
gave a theoretical basis for it assuming 10% 
‘L 50% longer MFP of proton and neutron in 
nuclei. 

Kimura made extensive computer simula- 
tion experiment of Monte-Carlo calculation, 
expecting possible cut down of computation 
cost, introducing James-Stein-Estimator (JSE). 
JSE proceedure will be useful for the data of 
large statistical fluctuation in general. 

Introduction 

Accelerator based neutron beams were used 
for condensed matter research for more than 15 
years in Japan, and Accelerator breeder system 
is being studied systematically for 5 or more 
years now. 

I would like to talk on some related 
topics.recently developed by our study group. 
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On hadron transport Code 

Nakahara et al’) refined the NMTC/JAERI 
code which takes into account the high energy 
fission. He tried various cases of chasing 
formulae and parameter values related to the 
high energy fission and compared with the 
experimental results21. Mass dependence of 
the calculated nonelastic cross sections is 
also shown in comparison with the experimental 
data3). I will show just a small part of 
their results in the following three view 
graphs . The first view graph shows the com- 
parison of their results with the experiments 
of Steiner et a121 on the proton induced 
fission cross sections for Bi”“, Here, Af 
and An are level density at Saddle point and 
equil. deformation. Ordinate is of(Bi)/anon_ 
el(Pb,Bil.Itis not clear yet if there is a 
real physical meaning in the discrepancy be- 
tween proton and neutron bombardments. In 
Fig 2, for 238U, comparison between Il’inov’s 
1) and Kupriyanov’sS) idea of double humped 
structure of fission barrier was made. 
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Fig 3 is for 232Th. 
A s 250 made possible. 

Nakahara made possible to handle mass 
number up to 250 which is needed to study 
actinide incineration and other problems. 

On Energy Spectra of Spallation Neutrons 

The evidence of slight shoulder near 100 
MeV in the energy spectrum of spallating 
neutrons bombarded by high energy protons on 
heavy nuclei was explained by Tsukada6) as- 
suming longer mean free path of nucleons in 
the nuclear matter. Nakahara, using NMTC/ 
JAERI code11 calculated the energy spectra of 
neutrons for the case of Pb and U cylinder of 
60 cm in length and 10 cm dia, bombarded axi- 
ally by 590 or 800 MeV protons, obtained re- 
sults which suggest the existence of such a 
shoulder. The KfK7) and LANL~) groups per- 
formed extensive measurements at different 
emerging angles of neutrons from various 
targets and the shoulder becomes more con- 
spicuous for smaller emerging angles. 

Both the NMTC or HETC calculational re- 
sults ever obtained assuming free nucleon 
interaction cross sections have never given 
such shoulders, irrespective of the inclusion 
of high energy fission process or not. 

Tsukada, therefore, assumed smaller in- 
teraction,that is, longer MFP of nucleon- 
nucleon collisions inside the nucleus. This 
will enhanc,e the leakage of high energy 
neutrons from the nucleus and the number of 
evaporating neutrons will be suppressed. 

Fig 4 is a NMTC/JAERI results assuming 
10% and 50% increase of MFP. Even though the 
statistics is not yet very good, we can see 
a slight bamp in the energy spectrum at about 
100 MeV. 

However, Nakahara found decrease of the 
total neutron yield as shown in Fig 5. 
It seems a good compromize may exist at about 
10% increase of MFP. However, if the target 
dimension is much larger than the one of KfK 
experiment, total yield may be larger inde- 
pendent of MFP. 
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Tsukada carefully analysed the spectra 
and suggested existence of the third component 
as shown in Fig 7 and Fig 8. He assumed ex- 
ponential forms like 

Ai(E/EOi)exp(-E/Eci) 
i = 1, 2, 3 

for the evaporation part, high energy tail 
and also for the third component. 

The third component, that is, of inter- 
mediate energy of around 20 MeV may corre- 
spond to the pre-equilibrium component as 
suggested by Nakai et al.91 This component is 
included in the cascade calculations of 
Nakahara. 
Molten salt target Molten salt of LiF-BeF2- 
DF+, for example, looks very promising, with 
many advantagious features. A molten salt 
accelerator breader system is being proposed 
by Furukawa et al. 

Our study group for A.B. system proposes 
to construct an 800 MeV x 500 ua proton 
synchrotron, GEMINI, as the first step to the 
1 GeV x 300 ma proton linac which will be the 
final demostration machine of A.B. system. 
We hope it will be realized in the early 2000’s. 
On GEMINI, Sasaki talked yesterday. We think 
we need at least 2%3 more acceleratorgas the 
intermediate test machine of rather low energy 
but of high current. This is needed for the 
R 8 D of target system for the final design. 

Pb cylinder 
160 cm long, 10 cm dia 

, ._ 
I 

5 , 
1.0 1.5 

Multiplier to MFP in Nuclei 

Fig 6 



I 
Neutron fluxes on side boundery(KfK) 

Ep= 590Mev 

Pb cylinder 

60 cm L 1Ocm 1 

mfp in 

nuclei 

x 1.0 

x 1.1 

x 1.5 

101 En (MeV) 

lia 

10-3 - 

lo-’ - 

10-I - 

Neutron fluxes on side boundery 

(LANL) 

Ep=800MeV 

Pb cylinder 

60cm L 
-L, 

L 
1Ocm dia. 

!I, 

mfp in 

nuclei 

- x 1.0 

-_- x 1.5 

Ecut incident P 

10’ 
Fig 5 



KfK data (E 
P 

= 590 MeV) 

: A( E/EOj)exp( -E/Eoi> 
. Q= lSOO 

A1 :T=2 \kv.A=0.68 

A2 : T=10Mev,h=O.OlS 

E As_ : T=3OMev..-1=0.0034 

Q= go’ 

B, : T=2 Mer*,A=0.66 

Bz : T=ZOMev,.&=0.011 

B, :T=50Mev,~=0.0039 

Ds :T= 1GOMev , A=O.033 \. 'I 

IO- 
LO' 

. ,,.I , , 
JO' 

.,( 

En (Mew) ” 

Fig 7 

LANL data (Ep=800hIeV) 

: i L.J.NL 5’1~s 
I 

:Ep=SOOW) 

,o->i 
.- 

. e=1w 

A-L: s, = L.5 Mev, .t = 0.70 

.x2: PO = LO Mev, .?.=0.030 

&:E, = 35 Mev, A=O.OOSO 

x e= 45” 

B,:E,= 2 Hev, .<=a;0 

Bz:E, = 20 Mev, 6=0.030 

Bx:F, = so h&v, .~=0.007 

0 9 = 30J 

'i it 

\ 

1 

\ 

\- 
.’ .,, ,,. .I 

IO’ . a, 

"' E, (MeV) 

Fig 8 

- 



- 94 - 

Possible Application of James-Stein Estimator 
to cut Monte-Carlo Computation Cost. 

This is a study done mainly by Kimura 
with a help of Matsubara, a mathematical 
statistician, J.M. Carpenter noticed the 
theory of James-Stein Estimater may work. 
What is James-Stein-Estimator. The notion of 
J -Stein Estimator was first introduced on 
lftisby C. SteinlO) who pointed out the possi- 
bility of improving the usual estimator in the 
case of multivariate normal (Gaussion) mean. 
Simplest example. Suppose we have k test 
pieces, designated as j = 1, 2, 0.. k, of 
various metals whose length were measured by 
a certain person using a-certain instrument. 
The length depends on the temperature X. 
Suppose the results are shown by Aij in Fig 9. 
It is not possible to know the true length 
r.. We usually take the estimate Yij by the 
;i&Zt square fitting against X. 

The measurement for Al, for example, is 
independent of the measurements for AZ, A3*** 
and it is quite natural to take separately the 
least square fitting. We have, however, 
missed to use other information obtainable 
from the data of AZ, A3 **a. By taking into 
account all the data of all other samples 
simultaneously, we might be able to shift 
somewhat the data points like (as shown in 
Fig 9) 

Aij = The original measurements 
Aij (l)= Aij shifted vertically in some 

way 
Yij = The regressed value of AiA.. 
Yij(l)= The regressed value of ~~(11. 

We conjecture that when a proper’ shifting is- 
applied. then the total “risk” might be less. 
Here, the risks are defined as follows: 

RISK 0 = ; j=l iiL(Aij - fijl 
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RISK 2 - lll(Yij - fij)’ (3) 

k 
RISK 3 =,gl ip1 ‘$ (yij (l)_ fij)2 (4) 

If we can observe a tendency 
RISK 1 6 RISK 0, RISK 3 I RISK 2 (5) 

then it may be allowed to say that the shifted 

The most essential point to reduce Aij(‘) 
in this James-Stein proceedure is 

plays the central role to take into account 
the fluctuation of measurement in total. 

The “sectioned” data at each X = Xi, that 
is Aij (j = 1, 2,**.k) will be processed by the 
James-Stein proceedure (called JSE) to give 
rise to 

Aij Cl)= vi + oi (Aij - Ui) (6) 

average of Yij over j (7) 

and oi is given by 

k_3 o’{&@i-X) ‘/:(Xi-X) ‘1 
Pi=1 - k_l ' (8) 

pi are usually less than 1 and have a 
function to smear out the fluctuation. A 
large Aij may have larger chance to have 
fluctuated to the positive side from the true 
value and vice versa. In ci;e p. < 0, we 
should put it equal to 0. the true vari- 
ante, which we can not know, &t can be re- 
placed by its estimate S2 which is the average 
over j of residual variances S-j’ from the 
sample regression lines, (that is as shown in 
the graph) 
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S2 

s; = T;llz {:(A 

yj = f C Yij 
i 

j-rj ) z- 
f (Xi-X) (Aij-Y ) i 

C (Xi-?) ’ 
) (9) 

i 

Thus we can calculate Aij(‘) and yij(‘) l We 
define the Figures of Merit(FOM) as follows: .- 

FOM 1 = RISK O/RISK 1 
FOM 2 = RISK Z/RISK'3 (10) 

FOM 1 and FOM 2 may be of some measure how 
much the data were improved. FOM 1 and FOM 2 
are generally larger than 1 and tend to 1 when 
the measurement of Aij is more accurate. 

Shashi data.ll) This is the raw data of 
neutron spectra from target-reflector-moder- 
ator system of various configurations for the 
intense pulsed neutron source (IPNS) of 
Argonne. A, B, C and D correspond to differ- 
ent neutrqn beams, We will limit our interest 
to the 10 eV Q 10 KeV region, where log E vs 
log (EI) have straight lines. See Fig10 

Hand calculations using above formulae 
gives the result that all the p”s are very 

..(l) close to 1 and AiJ do not digfer from A.* 
more than 0.5% or so. This is because thiJ 
fluctuation of all the data are rather small 
and there remains not much room to shift the 
regression lines. The Monte-Carlo results of 
Shashi are already too accurate to allow the 
<SE proceedure.work substantially_. (Tablel) 

Computer experiments simulating the problem. 
We have done some comnuter exnerlment to under 
stand the problem more systematically. 

(1) Number of data k was increased to 12 
the first 4 of which are the regression li;es 
of Shashi data, 8 others were arbitrarily 
created. Each of these 120 points on the 12 
straight lines are designated by fi’ repre- 
senting the true values which we ca h not know. 
The 12 straight lines have different incli- 
nation and average. 

As a reference, we created another data 
set, which is consisted of 12 identical hori- 
zontal lines of the same height, that is 
fi’ 

d 
= 0.5000, i = 1, 2 *-*lo, j = 1, l .*12, 

an compared with the result using above data 
set, An I-number KR(1, 3) was introduced to 
compute more general way, that is, 

KR = 1 : k = 4, Shashi data (A, B, C, D) 
;; =‘2 : k = 8, A, B, *s-H 

= 3: k= 12, A, B, *.*L. 

To simulate the Monte-Carlo out put, we 
called randon number generator, of Gaussian, 
Uniform or Poisson type. In the case like 
Shashi data for neutron spectra, Poisson 
should be applied, but we also tried to use 
other subroutines. 

The Shashi data possesses a certain 
amount ofvariance S2 which was calculated to 
b; (o.u25)1: We wanted to take the magnitude of 
iat;idely changed, covering the one of Shashi 

. For this, we introduced another I 
number NR(1, 9) to cover wide range of 
standard deviation as follows: 

c!G = 2 (n-NR) (;y;si;;) (10) 
, 
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9 = z(n-NR)/ZJfij (l-fij) (uniform) (11) 
NR(1, 9) 

tried many other data sets betweenfbOO0 and+ 
4190, introducing n and 5, two parameters to 
approach to*4190 fromh000. The curves of 
Fig 12a, b gradually go up to higher level and 
become horizontal, that is, the FOM’s become 
independent of NR or standard deviation, as 
shown in Fig 15. The fluctuations of FOM’s 
&;om; very large as-can be guessed from Fig 

. The total times of calling random 
numier were almost lo8 to obtain the results 
as showninTable 2, in which some FOM’s show 
very large fluctuations due to some capricious 
results. If we exclude these extremely devi- 
ated cases, we obtain (FOMl), (FOM2) or 
( (FOMl)) , ( (FO~Ql) excluding more cases, 

oP =m= :!(n-NR)/26 
(Poisson) (12) 

with 1 = 2(NR-n) 
(n is not the max of i) 

NR(1, 7) 

n is an integer to shift the range of survey. 
Usually it is taken 1, We had better taken 

“k = 
2(n-NR) 12 to make the correspondence to 

t e other cases more clearcut. In case of 
Poisson, we introduced X to keep the standard 
deviation independent of absolute number of 
count of neutrons. In case of uniform, we 
must call the uniform random number 2(NR-n) 
times and compare it with fie. 

B 
Central limit 

theorem will be applied in t e case of uU and 

OP’ 
We obtain from the above 3 equations 

In up = (n-NR)/2.ln2+lnq 

The computer also prints out 

oEX = JRISK O/n&k, n = 10, (16) 
k = 4, 8 or 12. 

When the repetition of the computer 
experiments is increased, uEX quickly con- 
verges into one of above u’s. Therefore, the 
graphic representation by print out taking 
the number of lines for NR instead of oEX is 
quite ad;~;;~;I:~:gN~~ a, b) 
Summarv . each (*) in Fig 12 a, 
b is the average of 10 repetitions of rondom 
number generation. Similar proceedure was 
repeated 6 times generally, and plotted on 
the same figure. Fig 13 etc. are plotted the 
averaged FOM’s vs In uEX. 

Comparison with Shashi data. We must find 
FOMl or FOM2 in Fig 14(with Poisson, and for 
k = 4) corresponding to o = 0.025 of Shashi’s 
data. Unfortunately, our Poisson subroutine 
did not work for wide range of NR. It is 
essentially nothing but a gaussian for small 
up as 0.025. So, we refer to Fig 13, and find 

FOM l-l = 0.0054, FOM 2-l = 0.002. 

Thus the application of James-Stein 
Estimator for Shashi’s Monte-Carlo results 
will improve the data by only 0.5% for FOMl 
and 0.2% for FOM2, which are very small, as 
seen in Table 1 of hand calculation. 

Some interesting results. We could find some 
interesting facts as seen in Figs12 &13. 

(1) FOMl-1 is larger than FOM2-1 for the 
same oEX. This is understandable. 

(2) In the normal case, ln(FOMl,Z-1) are 
linear to ln uEX for wide range, But not 
exactly of straight lines. 

(3) The data points ( ___,,uate very much 
for FOMl-1 < 0.02 or > 1.0 and also in 
all region for FOMZ. 

We can not explain these facts just 
now. 

Another data set%l90. We have tried another 
data set, that is fij = 0.500000 for all i, j. 
(We call this ff4190. The enlarged data set 
including Shashi’s is called #7000.) We also 

If we are allowed of some conjecture, 
these numbers may coincide to lO(k-3) and 
2(k-3). All are integers in the range of 
standard deviation, with one exception of the 
case of KR = 2 and (FOMZ) or ((FOM2)). 

We can not find the reason just now. 

Discussion. Finally, I must come back to the 
‘frrst problem. that is : Can we cut the com- 
putation cost-of Monte-Carlo calculation ? 

Suppose we have cut down to l/100 of what 
Shashi had spent, the standard deviation may 
be 10 times larger. It may be allowed‘to say 
that the amount of information contained will 
be proportional to the inverse of standard 
deviation squared,generally. Fig 13 shows 
that the degree of improvement (FOMl-1 or FOM2 
-1) are almost proportional to u2. Does this 
fact mean that the saving of expenses to l/100 
will result in the improvement of reliability 
by JSE proceedure but, inevitably accompanied 
by the decrease of usefulness to l/100 ? 
In other words, does the JSE processing give 
nothing good ? It is not so. The increase of 
standard deviation is the results of saving. 
cost to l/100, but the size of standard devr- 
ation did not change very much by JSE 
processing itself. 

JSE proceedure will not be vary powerful 
when the raw data are enough accurate. If the 
raw data are consisted of sevaral (> 4) reg- 
ression lines considered as distributed in 
multi-variate normal distribution, the JSE 
application will be recommendable, especially 
when the counting rate, for example, is very 
low and can not be measured again. . 

Table 1 Hand Calculated Results 

i = 1: Xi = lOgEi = 1.197 

A = 3.830 x 16-4 B = 4.800 x 10-4 
A(l)= 3.828 11 B(l)= 4.390 ” 
C = 3.056 11 _ ,t 
C(l)= 3.060 11 ;(l,Z 22:;;; II 

Similar results are obtained for i = 2, **-lo. 

Table 2 
FOM 1 and FOM 2 of’4190 averaged 

KR= 1 2 
FOM 1 12.3+4.4 98.8+135 
FOM 2 2.1+0.1 13.3+ 12.6 

(FOM 1) 11.2+1.7 47.9+2.0 
(FOM 2) 2.07+.04 8.9+0.5 

((FOM 1)) 9.53+0.8 47.9+2.0 
((FOM 2)) 2.06+0.03 8.9+0.04? 

k 4 8 
k-3 1 5 

10 (k-3) 
Z(k-3) 

10 50 
2 10 ? 

NR=(1,9) 
3 

101.2+27.2 
18.6+ 2.6 
89.9+ 7.6 
17.9+ 1.6 
89.9+ 1.6 
17.9+ 1.6 
12 

9 
90 
18 
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This vrocedure is somewhat similiar to 
religious liturgy, certifying you that 
you are now closer to the truth or to 
God. 
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